EASTERN REGIONAL RESEARCH CENTER
AGRICULTURAL RESEARCH SERVICE
UNITED STATES DEPARTMENT OF AGRICULTURE
600 E. MERMAID LANE
WYNDMOOR, PA 19038
(215) 233-6400

Title: Growth and Heat Resistance Kinetic Variation Among Various Isolates of
Salmonella and Its Application to Risk Assessment

Author(s): V.K.Juneja, H.M. Marks, and L. Huang

Citation: Risk Analysis (2003) 23:(1) 99-213

Number: 7203

Please Note:

This article was written and prepared by U.S. Government employees on official time, and is
therefore in the public domain.

Our on-line publications are scanned and captured using Adobe Acrobat. During the capture
process some errors may occur. Please contact William Damert, wdamert@arserrc.gov if
you notice any errors in this publication.




Growth and Heat Resistance Kinetic Variation Among
Various Isolates of Salmonella and its Application

to Risk Assessment

Vijay K. Juneja,”* Harry M. Marks,? and Lihan Huang!

The abilities of celis of a particular type of bacteria to leave lag phase and begin the process of
dividing or surviving heat treatment can depend on the serotypes or strains of the bacteria. This
article reports an investigation of serotype-specific differences in growth and heat resistance
kinetics of clinical and food isolates of Salmonella. Growth kinetics at 19°C and 37°C were
examined in brain heart infusion broth and heat resistance kinetics for 60°C were examined
in beef gravy using a submerged coil heating apparatus. Estimates of the parameters of the
growth curves suggests a small between-serotype variance of the growth kinetics. However,
for inactivation, the results suggest a significant between-serotype effect on the asymptotic
D-values, with an estimated between-serotype CV of about 20%. In microbial risk assessment,
predictive microbiology is used to estimate growth and inactivation of pathogens. Often the
data used for estimating the growth or inactivation Kinetics are based on measurements on
a cocktail—a mixture of approximately equal proportions of several serotypes or strains of
the pathogen being studied. The expected growth or inactivation rates derived from data
using cocktails are biased, reflecting the characteristics of the fastest growing or most heat
resistant serotype of the cocktail. In this article, an adjustment to decrease this possible bias
in a risk assessment is offered. The article also presents discussion of the effect on estimating
growth when stochastic assumptions are incorporated in the model. In particular, equations
describing the variation of relative growth are derived, accounting for the stochastic variations
of the division of cells. For small numbers of cells, the expected value of the relative growth is
not an appropriate “representative” value for actual relative growths that might occur.

KEY WORDS: Survival curves; growth curves: variance components; nonlinear; stochastic

1. INTRODUCTION

Gram-negative pathogens such as Sa/monella and
Escherichia coli are a continuing concern to the food
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industry because they can survive in foods under a
myriad of conditions. To design processes for ensuring
microbiological safety, studies of growth or inactiva-
tion of the pathogen of concern are conducted assum-
ing conditions similar to those that occur during the
preparation and processing of raw agricultural com-
modities into ready-to-eat processed foods. Such stud-
ies involve a careful review of the published literature
regarding the incidence of food-borne illness, mortal-
ity, and recalls associated with the product. It is not
possible to study the growth and inactivation kinet-
ics of all the serotypes or strains that can contaminate
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food and thus cause a potential risk if consumed. Con-
sequently, a number of serotypes are selected and
composite cultures (a “cocktail”) of them are stud-
ied under different conditions. Because the asymp-
totes of the derived curves are thought to be describ-
ing the asymptotic kinetics for the fastest growing or
most resistant of the selected serotypes in the cocktail
for a given condition, the derived parameters used to
describe the growth or survival curves from data ob-
tained from cocktails are thought to be conservative
regarding the possible growth or inactivation of the or-
ganisms in a risk assessment application. The selected
serotypes for a cocktail are usually the ones thought to
have the highest growth rates and the most heat resis-
tance among serotypes that are found in the food ma-
trix of interest, excluding those with atypical growth
characteristics or unusually high heat resistance, such
as Salmonella senftenberg 775W,1) that are not found
in the food matrix of interest. The consequence for a
risk assessment is that, although the measured values
of the kinetic parameters are presumed to be conser-
vative, the inherent between-serotype variability of
the kinetic parameters is not accounted for in the risk
assessment. Basically, the expected values of the esti-
mated survival or growth curves would be biased with
respect to the true “average” curves for the popula-
tion of Salmonelia spp serotypes, and the between-
serotype variances of the curves would not be known.
This article discusses possible procedures of adjust-
ment that would account for the bias that is created
by using a cocktail.

A natural consideration for a risk assessment is
the relationship between the celi’s ability to grow and
multiply and the cell’s ability to survive adverse en-
vironmental effects, such as heat. A more heat re-
sistant cell, associated with a higher D-value—the
time to reduce the population by 90% at a given
temperature—might also be a cell that has a faster
growth rate. Or, alternatively, the mechanism that en-
hances a cell’s ability to resist and stay viable may hin-
der or not contribute to its ability to grow and multi-
ply. Thus, modeling the risk associated with pathogens
in foods entails identifying a multivariate distribution
characterizing the variances of the growth and lethal-
ity kinetic parameters and the correlations among
them.

The usual outputs of predictive microbiology are
estimates of growth and survival curves that repre-
sent, in some statistical sense, the expected values of
the curves, An important issue for risk assessment is
the application of these curves to a small number of
cells. The ability of cells to survive or to “leave” the lag
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phase and begin the process of dividing varies among
cells of an otherwise homogeneous populations of
cells, This inherent variability, particularly when there
are a small number of cells, could be important in a
risk assessment for determining the distribution of the
number of cells as a function of time.

Accordingly, the aim of the present work is to de-
termine and compare the growth characteristics and
heat resistance of various Salmonella serotypes and
to discuss possible applications and associated con-
cerns for risk assessment. There have been a few stud-
ies published on the growth and inactivation Kinetic
parameters of different serotypes of pathogens, and
many of these have shown, to varving degrees, sig-
nificant serotype variability.”>~® In these studies, the
components of variances that would be used in a risk
assessment, such as the between-serotype variance
component, are not reported. In this article, estimates
of variance components are made.

In addition, this article presents a short discussion
concerning the variability of growth of a small pop-
ulation of cells. Equations that are developed in pre-
dictive microbiology provide the predictions of the
expected amount of relative growth, or actually the
logarithm of the relative growth, for fixed conditions,
often temperature. However, for small numbers of
cells the expected value may not be an appropriate
value for use in a risk assessment: it is possible that for
small numbers of cells there are significant probabil-
ities of no growth or large amounts of growth. Equa-
tions to determine these probabilities are developed
from which the probabilities of no growth and of large
amounts of growth are computed using the parame-
ters of the estimated growth models of Salmonella
derived in this article.

2. MATERIALS AND METHODS

The procedures used for measuring levels of bac-
teria in samples over time follow standard proce-
dures that have been used in previous studies.(*19
Since the purpose of this article is to present a dis-
cussion of risk assessment issues, a short accounting
of the procedures used is given. For more details, in-
terested readers can examine the articles referred to
above.

2.1. Bacterial Serotypes

Salmonella serotypesisolated from raw processed
beef, pork, chicken, and turkey, as well as human
clinical isolates, were used in this study. The
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Table 1. Salmonella Serotypes

Isolate
Serotype/Strain Designation Source Origin
Salmonella Kentucky* 062 FSIS (1) Chicken
S. Thompson 120 FSIS (8) Chicken
S. Enteritidis, phage type 13a* H3527 CDC (10) Clinical
S. Enteritidis, phage type 4 H3502 CDC(11) Clinical
S. Typhimurium, phage type DT104 H3380 CDC (14) Clinical
S. Hadar* MF60404 FSIS (20) Turkey
S. Copenhagen* 8457 NVS Labs (21) Pork
S. Montevideo 051 FSIS (24) Beef
S. Typhimurium* 026 FSIS (25) Beef
S. Heidelberg F5038BG1 CDC (40) Stuffed ham/chad slicer

*Serotypes for which both growth and survival curves were estimated.

information about these serotypes is given in Table I.
These serotypes were stored at -70°C in a mixture
(85:15; v/v) of Tryptic Soy Broth (TSB; Difco; De-
troit, MI) and glycerol (Sigma Chemical Co., St. Louis,
MO).

2.2. Preparation of Test Cultures

To prepare the cultures, vials were partially
thawed at room temperature and 1.0 ml of the cul-
ture was transferred to 10 ml! of brain heart infusion
broth (BHI; Difco) in 50-ml tubes and incubated for
24 hours at 37°C., This culture was not used in growth
or heating studies as it contained freeze-damaged
cells. A working culture for use in growth and heating
studies was prepared by transferring 0.1 ml of each
culture to 10-ml tubes of BHI and incubating aerobi-
cally for 24 hours at 37°C. These cultures were main-
tained in BHI for two weeks at 4°C. A new series
of cultures was initiated from the frozen stock on a
biweekly basis.

A day before the experiment, the inocula for con-
ducting the growth and heating studies were prepared
by transferring 0.1 ml of each culture to 10-ml tubes of
BHI, and incubating aerobically for 18 hours at 37°C
to provide late stationary phase cells. On the day of
the experiment, each culture was centrifuged (5,000 x
g, 15 min, 4°C), the pellet was washed twice in
0.1% peptone water (wt/vol) and finally suspended
in peptone water to a target level of 8-9 logy
cfu/ml. The population densities in each cell suspen-
sion were enumerated by spiral plating (Model D;
Spiral Biotech, Bethesda, MD) the appropriate dilu-
tions (in 0.1% peptone water), in duplicate, on Tryptic
soy agar (TSA; Difco) plate and incubating at 37°C
for 48 hours.

2.3. Growth Experiment

Brain heart infusion broth (BHIB, 100 ml) in
250-ml flasks were sterilized for 15 minutes at 121°C.
Each flask was inoculated with 0.1 ml of the diluted
inoculum of an 18-hour culture of Salmonella to yield
a starting level of approximately 2-3 log cfu/ml, and
then incubated at 19 or 37° on a model G-26 rotary
shaker (120 rpm). At intervals appropriate for the
temperature, samples were withdrawn for enumerat-
ing the bacteria by serial dilutions (in peptone water),
surface plating with a spiral plater onto TSA as men-
tioned above. Two replications were performed for
each temperature.

2.4. Thermal Inactivation Procedure

The formulation of the model beef gravy used in
the present study as heating menstruum was: 1.5%
protease peptone, 5.0% beef extract, 0.5% yeast ex-
tract, and 1.7% soluble starch. All ingredients were
obtained from Difco Laboratories (Detroit, MI). The
gravy was sterilized by autoclaving prior to use. Beef
gravy (10 ml) was inoculated with 0.1 ml of the diluted
inoculum of selected Salmonella or E. coli isolates to
obtain a final concentration of approximately 7-8 log
cfu/ml. Thereafter, the gravy suspensions were heated
at 60°C using a submerged coil heating apparatus.(!!
The submerged coil heating apparatus is comprised of
a stainless steel coil fully submerged in a thermostat-
ically controlled water bath, which allows microbial
suspensions to be heated, with a short time to achieve
temperature equilibrium within the range of 20-90°C.
During the heating procedure, samples (0.2 ml) were
removed at predetermined time intervals. Where low
cell numbers were expected, 0.6 ml aliquots were re-
moved. Samples were cooled rapidly in ice sturry.
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2.5. Enumeration of Surviving Bacteria

Decimal serial dilutions were prepared in pep-
tone water and appropriate dilutions surface plated
in duplicate on TSA, supplemented with 0.6% yeast
extract and 1% sodium pyruvate, using a spiral plater.
Samples not inoculated with Salmoneila were plated
as controls. Also, 0.1 and 1.0 ml of undiluted suspen-
sion were surface plated, where relevant. All plates
wete incubated at 30°C for at least 48 hours prior to
counting colonies. For each replicate experiment, an
average cfu/g of duplicate platings at each sampling
point were used in the statistical analysis.

2.6. Statistical Methods
2.6.1. Growth Curves

Our main concern is to determine the growth
curve during the lag and exponential phases of
growth. Lag times before the cells are ready to divide
depend on many environmental factors and possibly
the initial levels.!2 However, for Salmonella, infor-
mation on the effects of initial levels on lag phase
duration and growth rates is not available to us. Thus,
it is assumed that relative growth curves are indepen-
dent of the initiai levels. In these studies, the initial
levels were about 2-3 logyo.

The equation for predicting growth is derived by
assuming that cell division involves two stages:(1314)
(1) an original cell (O-cell) in stationary phase passing
through an initial state, entering into a similar physi-
ological state as that of a new born cell (D-cell) and
(2) a D-cell dividing into two, newborn D-cells. The
equation used to estimate the growth curves at a given
temperature is:

log,o{ E(r(£))) = logyg(ue™ +re™)
— logjo(u +4) (1)

where #(1) is the observed relative growth at time £, A is
the exponential rate that original cells leave lag, and u
is the exponential growth rate of cells no longerin lag.
This equation corresponds to the equation developed
by Baranyi!*E4.-23) for estimating growth curves for
cells in lag and exponential phases.

The mathematical lag time, a characteristic of the
population growth curve, is defined as the intersection
of the horizontal line, y = ng (no is the log of the
initial level), and the asymptotic line of the curve as ¢
approaches infinity.'*! The mathematical lag time,
lagGrowth, is thus:

In{1 + i2/2)
—

lagGrowth = (2)
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Following customary practice, the exponential growth
rate in log;o units, egryg, is reported. Thus:

egryo = p/ In(10). 3)

A statistic of interest(*1® for modeling purposes is
the product of the exponential growth rate, egrio, and
the lagGrowth:

 =1In(1+ u/2)/10(10). C))

The value of w has been shown to be relatively
less variable(!®) over different temperatures or other
different environmental conditions compared to the
other parameters mentioned above.

2.6.2. Survival Curves

The survival curves considered can be charac-
terized by an initial shouider for small times, thai,
for large times, asymptotically approaches a straight
line with slope equal to the negative of the inverse
of the asymptotic D-value. Many equations for de-
scribing nonlinear survival curves have been devel-
oped,®17-2) sop-~ motivated by mechanistic consid-
erations, others by just providing good empirical fits,
In attempting to find a set of curves that provides a
good fit to the observed data, three different functions
were examined. The first equation considered® has
two parameters: k and w > 0:

087 00) = —kt + logsg 1+ =™

(5)

where r(t) is the observed relative decline. As 1 —
oo, the derivative of logio( E(r(t))) — -k, and as
t — 07, the derivative approaches 0 so that Equa-
tion (5) describes a survival curve with an asymp-
totic D-value and curved “shoulders” with initial
slope equal to 0. However, most of the observed
data did not follow a pattern that would suggest
a survival curve with this latter property. Thus an
adjustment to Equation (5), which permits nonzero
initial slope, was made by setting the coefficient of
(1 —e™™)/w in Equation (5) to an arbitrary constant,
This model is referred to as the 1-stage (modified)
model.
A second model considered,

logi( E(r(1)) = ~kt —a(e™ ~1).  (6)

This is a modification of an equation developed by
Han!? for heat activation of spores, and further de-
scribed by Sharpe and Bektash.('®) In those papers,
the survival curves considered were convex, and there
was a relationship of the parameter values such that
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second derivative of logia{ E{r{r))) was positive for
all t. For our application, if it is assumed that if a
and b > 0, then, for all ¢, the second derivative of
login{ E(r(r))) is negative and as t — oo, the deriva-
tive -» —k. Furthermore, as 1 — 0%, the derivative
—» -k -+ ab and thus can be positive, representing
an initial increase in the cell population before cell
inactivation begins, This function provides the capa-
bility to fit curves to data for which it appears that the
derivative at t = (} is not zero,

The final model considered also has this prop-
erty and is motivated by using the logistic function as
follows:

logy(E(r(1))) = ~kt = log,o(l + ™9}
+ log(1 + €™). %)

The logistic function has been used for fitting survival
curves and is a flexible function that provides good
capability of fitting curves to data sets that display
different relations.

For determining the values for the parameters
of the regressions, OLS nonlinear regression rou-
tines were used from SAS®—PC refease 8.00, PROC
NLIN,® where the observed levels of cfu/ml were
used as the dependent variable. The fitted survival
curve equations thus include the numbers of cells at
time equal to 0 as parameters. Parameter values were
estimated using the default secant method (DUD pro-
cedure), which is a Gauss-Newton procedure, except
the partial derivatives are estimated numerically from
the iterations. For computing root mean square errors
(RMSE) for the models, the sum of squares of the
residuals was divided by n — p where n is the number
of data observations and p is the number of parame-
ters in the model.

2.6.3. Statistical Analysis

An analysis of variances (AOV) is used to es-
timate significance of factors and variance compo-
nents. For our purposes, the (mixed) model for
expressing the result, y, the dependent variable: the
natural logarithm of either the exponential growth
rate; the product of the exponential growth rate and
the lagGrowth, » (Equation {4)); or the lethality in-
activation rate (D-value), as a function of the s™®
serotype, €' replicate, k™ trial within the e'® replicate
for a specified condition, C, can be written as

YseCk = Mo+ 0y + 0 0+ 0 + 0 o Foyiescny (8)

where ¢ is the mean for the population of serotypes
for the given condition, C, of the experimental sce-
nario; o, and o ¢ are the effect of the s™ serotype and
interaction with the condition of the experiments; o,
is the effect for the e'™ replicate; o, is the interaction
of the s serotype and e™ replicate; and e, (.,s,c.4) is
the “residual” error that would include the measure-
ment error arising from the k'™ trial within a replicate
and possible differential effects of the experiment on
the s™ serotype, or higher-order interaction effects of
the experimental condition, serotype, and replicate.
The effects are assumed to have means equal to zero
and variances equal to o7, where z ranges over the
subscripts of the above effects, and are assumed to be
uncorrelated. The magnitudes of the effects, and thus
the variances of them, may depend upon the condi-
tion C of the experiments. Generally, it is assumed that
higher-order interaction effects are negligible so that,
for example, repetitions within a replicate would per-
mit an estimate of oy 5.¢.x). However, this assump-
tion may not be innocuous.

Aninterpretation of the variance components; o2
and 0., is that 02/(0? + o2.) represents the (intra-
class) correlation of serotype effects for different con-
ditions; if the correlation were close to 1, then the in-
teraction would be close to 0; if the correlation were
close to 0, then 67 would be close to 0 in compari-
son to o2.—meaning that over the different condi-
tions, there is not a pronounced average serotype ef-
fect, relative to the serotype effect for (within) a given
condition. This latter possibility of a pronounced in-
teraction seems unlikely; for example, it seems un-
likely that a given serotype grows faster or has greater
heat resistance at one temperature and grows slower
or has lesser heat resistance at a different temper-
ature, relative to the other serotypes. If the ther-
mal death curves (TDC) were linear then E(Ays) =
bgAT, where bg is the slope the slope for the §*
serotype. For two given temperatures, Tj, j =1, 2, the
variance of bs is 262c/(T; — T2)%, so that if there is no
interaction (o 2c = 0), then there is a common z-value
for the population of serotypes.

The term “replicate” refers to what we consider
anindependent trial or a set of trials, but performed by
the same analyst, out of necessity, in different periods
of time with different preparatory materials. Within a
replicate, there are experiments conducted with dif-
ferent serotypes or different temperatures, as the case
may be. For the studies presented in this article, repli-
cates including different conditions are independent,
so that the interaction term o ¢ can be assumed to be
0. The variance of results obtained from repetitions
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within replicates is assumed to provide an unbiased
estimate of 0, (. s, c k). Our primary goal in this analysis
is to estimate o, and to consider o0s.c, Where possible.
Our goal is achieved, at least in an unbiased way, only
to the degree that what we have called replicates are
actually true independent realizations; if analyst ef-
fects were significant, our goal would not be achieved.
The results of the AOV will be reported as coef-
ficients of variation of the exponential growth rates
or D-values, as the case may be, using the approxi-
mation, CV(x) = 100std(In(x)), where x is a random
variable. If the underlying distribution is log-normal,
then, for CVs less than 20%, the percent error of this
approximation is less than or equal to 1%; for exam-
ple, an estimate of CV = 20% is obtained when the
true CV is 20.2%. The actual variance components
are estimated using SAS®—PC release 8.00, PROC
VARCOMRP, the default MIVQUEO option.®

3. RESULTS

3.1. Growth Curves

Figs. 1 and 2 present graphs of the observed data
and the fitted growth curves at temperatures = 19°C
and 37°C, respectively, for the different Salmonella
serotypes. For Salmonella at 19°C, there were small
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number of observed data per replicate, thus, at this
temperature, one curve was fit for each serotype.

Table II presents the estimated exponential
growth rates, egrio(log;o/h), lag times, lagGrowth(h),
and product of the exponential growth rate and
lagGrowth, w, for each Salmonella serotype, and the
averages over the serotypes together with standard er-
rors. At 19°C and 37°C, respectively, the averages of
the egrips, are 0.26 logio/h and 1.26 log;o/h; the aver-
ages of the lag times are 5.3 and 2.1 hours; and the
averages of w are 1.4 and 2.8. The difference of
the averages of w is statistically significant at near
the 0.01 level, based on a two-sample t-test. How-
ever, when considering replicates as a random factor,
the difference is not statistically significant (P-value =
0.38).

For egrip at 37°C, there is a replicate effect
(02 > 0), where the average of the estimated egr was
higher for the first replicate. Accounting for this ef-
fect and using the AOV of Equation (8) with In(egry)
as the dependent variable, the between-serotype vari-
ance, o2, is estimated to be negative. Assuming that
of = 0, the residual error CV of egry is estimated
to be about 16%. Considering the replicate effect
as a random effect, the total CV is estimated to be
about 22%. At 19°C, there was only one replicate per

0 2 4 6 8 0 2 4 6 8
[ S N T SRS R N |
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[ ]
o r 8
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[]
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87 L) ) .
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Fig. 1. Observed and fitted growth curves at 19°C for 10 serotypes of Salmonella, labeled A-J in order as presented in Table 1.
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Fig. 2. Observed and fitred growth curves at 37°C for 10 serotypes of Salmonella, labeled A-J in order as presented in Table 1. Observed

points for replicate 1 indicated by m; replicate 2by @.

serotype, and the (total) CV of the estimated egrj is
about 24%. Pooling results over both temperatures
and using Egquation (8), the temperature-serotype in-
teraction variance component, "fc» is negative, the
serotype CV, based on o2, is about 10%, and the resid-
ual CV is 16%.

For the product of the exponential growth rate,
egryg, and lagGrowth, w, at 37°C, as with egrjo, the
AOQV indicated a statistically significant replicate ef-
fect. Accounting for this effect, using the AOV of
Equation (8) with In{w) as the dependent variable,
the between-serotype variance, o2, is estimated to be
negative. Assuming that ¢2 = 0, the residual stan-
dard deviation, oy, is estimated to be about 0.57.
At 19°C, there was only one replicate per serotype,
and the total standard deviation of In(w) is 0.93.
The AOV, Equation (8), on In{w) yielded a nega-
tive temperature-serotype interaction, the between-
serotype standard deviation, o, was estimated as 0.34,
and a residual standard deviation, ¢, as 0.62. Also
from the analysis of variance, the between-serotype
correlation of In{egrp) and In{w) is estimated to be
0.79, and the correlation of the residuals is estimated
to be 0.74.

Coefficient of variations of estimated generation
times for 45 strains of Salmonella enteritidis are re-

ported® for selected temperatures ranging from 7-
42°C. The generation time is inversely proportional o
the egr, so that the CV of the generation time equals,
in approximation, the CV of the egr. The reported CV
values generally decrease with increasing tempera-
ture. At17°Cand22°C, the estimated CV valuesrange
between 10% and 15%, which is considerably smaller
than the 24% estimate given above at 19°C. At 37°C,
the reported CV is 3.8%, which again is considerably
smaller than the 16% estimate of the replicate CV
given above at 37°C. Estimates of the experimental or
replication CV values were not reported in the arti-
cle, and thus it is not clear what the magnitude of the
between-strain or serotype CV might be. However,
the small estimated CV values reported in the article
suggest a negligible between-strain CV for Salmonella
enteritidis.

3.2. Survival Curves

As mentioned above, the survival curves appear
to have shoulders and asymptotic D-values. For the 1-
stage adjusted model, the estimates of the values for
w were mostly zero, thus the actual model that was fit
assumed w = 0; that is, the fitted function is
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19<C 37°C
Serotype egr logioh Lag (h} w iogiy egr logioth Lag (h} wlogyg
A 0.204 8.701 1.774 1.048 1.752 1836
B 0.294 5.655 1.662 1.401 2.818 3974
C 0.181 0.642 0.116 1.202 1.700 2159 Table I§. Estimates of Exponential
D 0.312 6.715 2092 1.230 2678 3289 Growth Rates. egryo. (logio/h); Lag Time
E 0.177 2.845 0.503 1.336 2512 3.678 {h): and w, the Product of Lag Times and
F 0302 5.915 1.788 1.292 1.974 2547 egr1o. for 10 Serotypes of Salmonella,
G 0.280 4.906 1.373 1.252 1377 1.693 labeled A~J in Order as Presented in
H 0.307 6.557 2.010 1.372 1.929 2.865 Table I, at Temperatures 19°C and 37°C
[ 0.198 3787 0.751 0.978 1.474 1.435
J 0.298 7270 2.166 1.448 2.567 4,105
Mean 0.255 5.299 1.424 1.256 2.078 2,756
SE 0.018 0.743 (.228 0.048 0.166 ¢.309
CV error 71% 14.0% 16.0% 38% 8.0% i1.2%

log)o( E(r(t))) = —kt + log,g(1 +b1).  (9)

Table III presents root mean square errors (RMSE)
for the different nonlinear regression models iden-
tified above in Equations (6), (7), and (9), the esti-
mated asymptotic D-values, and the estimated CV of
the asymptotic D-values for each survival curve, The
model described by Equation (6) is referred o as the
HSB modelinreference to the initials of the authors of
the two articles mentioned above in which this model
is derived. The RMSEs (Table II1) are similar with
the exception of those for serotype E, for which the
RMSEs for the 1-stage adjusted model are substan-
tialty larger than those of the other curves, and for
one replicate of the cockiail, for which the RMSE for
the 1-stage adjusted model is substantially less than
the others. Further, almost all the HSB and all the
I-stage model fitted curves have positive slopes at
t = 0. Some of these slopes are relatively large and
thus, in these cases, there are poor fits for the por-
tions of the survival curves near 0. From Table III it
1s seen that. within serotypes, the estimated asymp-
totic D-values of the three models are not too differ-
ent, with one exception: for one replicate of serotype
E, the estimated asymptotic D-value for the HSB
(Equation (6)) model was 0.34 minutes, while those
for the logistic and the 1-stage adjusted models were
0.51 minutes and 0.60 minutes, respectively. It should
be noted that the error CV of this exceptional asymp-
totic DD-value was 145%, reflecting a severe collinear-
ity of the estimated parameters of the particular sur-
vival curve, With this one exception, the error CV
values are less than about 15%. The exceptional val-
ues noted above suggest that the estimated asymptotic
D-values obtained using the logistic medel, compared

over the experiments, are more stable than the esti-
mates obtained using the other models. This can be
seen more formally by computing the variances of the
pair-wise differences of the logarithms of the asvmp-
totic D-values, and equating these variances to the
sum of the unknown individual variances and solv-
ing for them. A higher estimated individual variance
for one model would imply less stability of estimated
asymptotic values relative to those of another model.
The estimated variance for the logistic ¢stimates is
negative {(=—0.008), while those for the 1-stage model
and the HSB models are 0.0162 and 0.022, respec-
tively. Fig. 3 presents plots of the observed logarith-
mic relative reductions and the fitted survival curves
using the logistic function described in Equation (7)
for the five serotypes and the cocktail.

From Table III, the estimated asymptotic
D-values ranged from about 0.3+4).7 minuies. In the
AOV model of Equation (8) of the In(D-value), the
between-replicate effect, o, was estimated to be neg-
ative for all models, so that the AOV was modified
assuming that replicate effect is 0. For this modified
AQV model, the between-serotype CVs of the esti-
mated asymptotic D-values are estimated to be ap-
proximately 21-22% for all models; the residual CV
values are estimated to be about 18-23 % the total CV
values (based on the sum of the two variance compo-
nents) range from about 27-32%, the highest value
being associated with the HSB model (Equation (8)).
The standard errors of these measurements were de-
termined by the standard jackknife procedure. The
standard error of the between-serotype CV using the
logistic model is estimated to be 5.8%: for the 1-stage
model the standard erroris estimated tobe 3.3%. Ifan
assumption of normality were made, then confidence
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Table II1. For the Five Selected Serotypes and the Five-Serotype Composite of Salmonella at 60°C, Labeled A-E in Order as Presented in
Table 1, Comparison of Root Mean Square Errors, Estimated Asymptotic D-Values (min/log;o) and CV of These, Derived from Nonlinear
Regressions of Natural Log of Relative Reduction Versus Time (Minute)

Root Mean Square

Error Asymptotic D-Values CV of Asymptotic D-Values

Serotype Replicate Logistic HSB 1-stage logistic HSB 1-stage logistic HSB 1-stage
A 1 0.356 0.359 0.336 0.41 0.41 0.41 10.6 149 4.6
A 2 0.339 0.359 0.385 0.35 0.35 0.35 6.7 10.5 4.4
B 1 0.147 0.149 0.168 0.70 0.69 0.67 3.7 53 26
B 2 0.379 0.379 0.393 0.72 0.72 0.63 44 4.4 5.6
C 1 0.640 0.650 0.626 0.47 0.48 0.46 11.0 13.6 6.5
C 2 0.359 0.376 0.395 0.31 0.31 0.32 8.5 14.2 48
D 1 0.425 0.435 0.435 0.44 0.44 0.43 6.5 79 4.2
D 2 0.300 0.302 0.290 0.66 0.66 0.62 8.7 9.9 53
E 1 0.177 0.198 0.278 0.51 0.34 0.60 151 1454 4.4
E 2 0.190 0.242 0.388 0.52 0.49 0.56 438 12.9 5.0
All 1 0.200 0.213 0.269 0.63 0.59 0.66 8.4 21.6 4.5
All 2 0.346 0.346 0.204 0.73 0.73 0.61 53 5.3 34

intervals could be formed using the ¢-distribution with
four degrees of freedom.

In an article,® estimates of D-values for 17
serotypes of Salmonella enteritidis at 57°C and 60°C
in liquid egg white product were given. The estimated
values of that article® are generally lower than the

estimated asymptotic D-values estimated above. At
60°C the 17 D-values averaged about (.33 minutes,
ranging from 0.20-0.52 minutes. The CVs for both
temperatures were approximately 26%, which cor-
responds closely to the estimated total CV of the
asymptotic D-values given above. From an analysis

1 3 5

| Jd

serotype: A

" | N
serotype: B

serotype: C

- 10

L)
T
O N & O ®

serotype: E

serotype: F

10
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6
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Fig. 3. Observed and fitted survival curves at 60°C for five serotypes of Salmonella, labeled A-E in order as presented in Table I, and for the
five-serotype cocktail, labeled F. The fitted curves were derived from the equation: y = —kt —logio(1+ e ™= @) + log;o(1 + €%?). Observed

points for replicate 1 indicated by m; replicate 2 by ®.
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of variance of the in(D-values) from the article,’
there is a statistically significant serotype effect
(P-value = 0.04); the between-serotype CV is esti-
mated as 13 %, and the CV associated with the residual
errar, which, since replicate values were not reported,
includes the temperature-serotype interaction, is €s-
timated as 22%.

4. DISCUSSION

The following brief discussions center around
some difficult issues involved m calculations for esti-
mating the change in Salmonella levels for a heating-
cooling scenario. Some of the issues would have an
impact on the calculations based on the results of the
above analysis, and others might have an impact that
would enable additional parameters to be modeled if
more accurate information were available.

The analysis of variance results given above
would be meaningful if the serotypes were randomly
selected from a well-defined population of serotypes,
It is possible to imagine that the selected serotypes
of a study are members of a population consisting of
those serotypes that are present, or might be present,
in food, so that instead of a finite size population con-
sisting of the selected serotypes, the imaginary popu-
lation is of infinite size of which the selected serotypes
represent a random sample.

4.1. Inactivation

A simple model for predicting D-values in ground
chicken, as a function of the fat level, based on results
on a cocktail of eight serotypes, is reporied in Juncja
etal. ®" Assuch, the model, if used in a risk assessment
for estimating the expected value of D-values, would
introduce a bias because of the significant between-
serotype variance calculated above. In an attempt to
climinate this bias and to account for the between-
serolype variance in a risk assessment, it might be as-
sumed that the serotypes of a population have parallel
thermal death curves: ys = yg + b(T — Tg), where s in-
dicates a serotype, the subscript 0 specifies a selected
temperature, and b is constant, so that there is a con-
stant z-value for the population. (In the more general
case. b 15 a random variable and the temperature Ty
1s selected so that b and yg are uncorrelated.) Us-
ing this restricted model, and assuming a constant fat
level of 10%, the thermal death curve for a serotype
from a population of serotypes is determined from the
equation:

In{d) ={(11.6 -~ 0.1835T)In{10) - g + ¢ (1%

Juneja, Marks, and Huang

where gis an adjustment factor accounting for the bias
of the cocktail effect and ¢ is a random variable with
normal distribution, mean, 0 and standard deviation,:
o, reflecting the variation of thermal death curves
within the population of serotypes and the standard
error of g, which is assumed here, for simplicity, not to
depend on temperature. For ease of calculation in this
example, the coefficients in this model are assumed to
be known without error. Thus, specifying g and ¢ de-
termines the inactivation kinetics for the serotype.
The factor y and its standard error can be ap-
proximated as follows. If we assume that n serotypes
of a cocktail are a random sample of serotypes from
the population, then the logarithm of the asymptotic
kinetic parameter for a composite of n serotypes rep-
resents the maximum value of » independent random
variables {x;, j = 1, ..., n} from a distribution with
cumulative distribution function F and density f =
F'If xy = max {x;}, and yg,y = F(xyy), then it is
well known that y,,, is distributed as a beta distribu-
tion with parameters # and 1, with central moments
;. Thus, the expected value of y, is u; = n/(n +
1), and the variance is g2 = (1 — 1)/ (n + 2). As-
suming that F is a standard normal distribution with
mean = 0 and standard deviation = 1, using the first
several terms of the Taylor series expansion, the ex-
pected value of x(,, %), can be approximated as:

20 X Iy + 2y M2 (21 (2 ) (11)

where z(;y = F~'(u1), and the standard error of 2,
S(n), can be approximated as:

s % 437/ f{( 20 (12)

The assumption of normality is used in deriving Equa-
tion (11), where the derivative of f{x) = —xf(x).

For an estimated D-value, Dy,), of a cocktail of
n serotypes, let vy = In{Dy,y}, and se(v,;) equal the
standard error of v, estimated with sufficient de-
grees of freedom so that a normal approximation to
the distribution of v(,), conditional on the selected
serotypes, can be considered sufficient. For simplic-
ity in these calculations, as mentioned above, it is as-
sumed that the error due to regression is small and
does not contribute much to the total standard error of
the estimate, so that se(v(,)) can be approximated by a
constant. Assume that the distribution of In{d), where
d is a random variable, representing D-values, from
the population of serotypes, is normal with mean, m,
and standard deviation of . The mean m is estimated
as:

M=vmn —ném (1%
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with estimated standard error of

stderr(hl) = \[s€® (V) ) + 1257, (14)

Thus, the factor g is equal to 5Z;,). The thermal death
curves, expressing the values of the natural log of D
with temperature, can be generated from a normai dis-
tribution with mean equal to /4, from Equation (13),
and standard deviation, s, as an estimate of o, where

5 = /5€® (v ) + 12 (1450, (15)

For our exampie, n = 8, %) = 1.39, and suppose n =
0.20 (corresponding to a between-serotype CV of
about 20%). The value, v(s), is derived from Equa-
tion (10) as: (11.6 — 0.1835T)2.303; g = (0.28; the mean
of the population is estimated: f = vg, ~ 0.28; and
s¢) = 0.63, so that the standard deviation s, estimat-
ing o, used in a risk assessment would be (se?(v(s)) +
0.057)%. I, as above for Salmonella, the repeata-
bility (between replicate CV) were estimated to be
about 20% with two replicates, so that se’(vi) =
0.04/2 = 0.02, then the standard deviation, s, would
be 0.277 In(minutes). Thus, £, from Equation (8), is
determined randomly by generating a normal variate
with mean equal to 0 and standard deviation equal to
0.277 In{minutes). In common log units, this would be
(1120 log;o(min). Thus, a 99% probability interval for
D-values would span a range of 4, but the expected
value would be about 25% less than the value esti-
mated from the cocktail model (Equation (10)) ig-
noring the bias correction term, g.

4.2. Growth

The analysis of the growth kinetic parameters sug-
gested that between-serotype effects would be small,
relative to the experimental variability. Consequently,
serotype effects, if not included in a risk assessment
for Salmonella spp, would, for the most part, not cre-
ate a significant bias relative to other sources of error.

However, when modeling growth in any medium,
an account is needed of the inherent random varia-
tion of the growth or division of cells when there are
a small number of cells, and of the decreasing growth
rates when there are large number of cells as the cell
population approaches stationary phase. For the lat-
ter, it has been assumed that there is a fixed maximum
level, M, that can be reached and that as levels ap-
proach this maximum level, the growth rate decreases.
The magnitude of M could be a function of many vari-
ables, including the medium and the competitive flora
present. For example, the magnitudes of M and the

exponential growth rates seen in studies for E. Col
0157:H7 have been observed to be substantially less
in meat that has not been irradiated than in meat that
has been irradiated or in broth.®¥ Recent work®
demonstrates effects on exponential growth rates, lag
phase duration, and perhaps M, in E coli O157:H7
due to agitation conditions (shaking vs. nonshaking)
and initial density in inoculated broth samples at low
temperatures. Thus, a good deal of research is needed
to determine the actual growth kinetics in different
media and conditions.

Equation (1) describes the expected value of
growth, or the expected growth curve. But an actual
growth curve for a given realization could be substan-
tially different from the one predicted from Equation
(1), even if the assumptions used for deriving Equa-
tion (1) and the estimated parameter values were true,
due to the inherent variability of cell growth. The time
that it takes the original O-celis to leave the lag phase
and the time it takes D-cells to divide are random
variables. For a risk assessment, assumptions concern-
ing the distributions of these random variables are
needed in an attempt to capture fully the range of pos-
sible risks. Equations that account for this variability
can be derived by employing the theory of stochas-
tic processes that was developed in the middle 20th
century.?”) The assumptions used in deriving equa-
tions are: (1) the probability distribution of the num-
ber of cells at a given time ¢ > 1 depends only on the
number of cells at time 7 and not on any historical
events that took place before t; (2) episodic or in-
stantaneous events of increases in the number of cells
by more than 1 have a probability of virtually zero—a
Poisson-like assumption that is used for simple lin-
ear birth or death processes;*”) and (3) events of cells
leaving lag or dividing are mutually independent at
any time. With regard to the lag phase duration of
cells, and thus the quantity A(¢), the first assumption
might be problematic because it has been reported
that the lag phase duration of cells depends signifi-
cantly on the historical experience of the cells, at least
when there is a sudden and substantial environmental
change.?® The second assumption excludes twins or
more offspring resulting, that is, cells do not divide
into more than two parts.

With these assumptions the probability distribu-
tion of the number of cells at time ¢ under general con-
ditions of changing temperatures can be derived. The
parameters of Equation (1), 4 and A, are expressed
as functions of time, described by some function such
as the Ratkowsky function.'> A short derivation of
the probability distribution of the number of cells as a
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function of time is given in the Appendix, using gen-
eration functions, where it is assumed that the length
of time for an O-cell to become a D-cell is distributed
with cdf H. The derived formula for (E(r(t))) is:

E(r(t)) =e 7O 4 /' e' =) g H(z) (16)
0

where y(t) = f; A(r)dv and v(t) = f; u(t) dr. When
H is an exponential distribution with parameter A, and
u is constant, then Equation (16) reduces to Equa-
tion (1). Baranyi®® developed Equation (1) using
a deterministic model. His development can be ex-
tended slightly by letting the kinetic parameters be
functions of time. Let ma(r), A= O or D, represent
the number of cells at time ¢. The following set of dif-
ferential equations:

to(1) = ~M(1)mo(t)
rp(t) = A(H)mo(t) + u(t)mp(r)

with boundary conditions, my(0) = Ny and mp(0) =0,
are derived reflecting the assumptions: (1) the popula-
tion of O-cells follows a first-order kinetic decay with

(17)

12
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parameter A(f); and (2) the D-cells increase due to two
sources: (a) the deaths of O-cells, and (b) the births
of D-cells, described kinetically by parameter w(¢).
The solution to the differential equations of Equation
(17) leads to an expression for the predicted relative
growth, r(1),

!
Pred(r(t)) = e + e”(')/ A(z)e~ V@R gy
0
(18)

which is the same as the expected value given of Equa-
tion (16). The differential equations:

to(t) = = (t)mo(r)

rp(t) = Mt)mo(t) + u(t)mp(t)(1 — mp(t)/ M() )
19

with boundary conditions, m(0) = Ny and mp(0) =
0, which describe the process are similar to those
of Equation (17), except for the inclusion of a term
(logistic) that accounts for the decreasing growth
rate when the number of cells becomes large. Fig. 4
presents the growth curve derived from the above

10 -

log10(relative growth)

Time (h)

Fig. 4. “Average” fitted growth curve at 37°C compared with observed log; relative growth for all 10 serotypes of Salmonella.
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equations, assuming & == 0.02, p = 2.83, M = 9.5, and
Np = 100. The displayed data points are the observed
logyo relative growths plus 2 log) at 37°C for all the ex-
perimentsof the individual serotypes. Asisseen, there
is a good deal of variability around the fitted growth
curve;, however, the curve described by the assumed
values of the parameters seems to provide a reason-
able average fit for the observed data. From Equation
(AS), assuming one O-cell (N = 1), the probability
that there would be still be only one cell at the end
of five hours is about 91%. The expected value, from
Equations (16) or (18), of the number of cells at five
hours is about 10%. If there were 10 cells initially, then
there is about a 40% probability that there would be
still 10 cells at five hours, even though the expected
number of cells would be about 10°. Even with 50
cells, there is about a 1% chance that there would not
be an increase in the number of cells after five hours,
Thus, when there are, initially, a small number of cells,
the expected value of the number of cells would be a
poor “representative” value for the actual number of
cells. This also can be understood by computing, from
Equation (A4), CV & 1250% for Np =1, and CV =~
395% for Ng = 10. If this interpretation is valid, even
in approximation, these calculations show that, for
small to moderate numbers of cells, it is critical for
risk assessments to account for the variation in the
increase of the number of cells by using probability
distributions for describing the growth possibilities.

5. CONCLUSIONS

This article explores some of the predictive mi-
crobiology issues that impact estimates of microbial
risk. Many factors affect the growth and survivabil-
ity of pathogens; there is extensive research on these
issues, and more is needed. However, the issues dis-
cussed in this article involve mathematical and proba-
bilistic issues that could affect the accuracy of predic-
tions of possible numbers of cells in portions of food,
subjected to given situations or processes.

In this article, the between-serotype of
Salmonella variation of kinetic parameters describing
growth and inactivation were examined. For growth
there did not appear to be a significant between-
serotype effect. Generally, the Salmonella survival
curves were concave, with asymptotic D-values.
For the five serotypes of Salmonella studied, the
between-serotype CV of the asymptotic D-vaiues at
60°C was estimated to be about 20%, with standard
error of about 3% or 6% depending on the model
used.

The expected growth or inactivation rates derived
from data using cocktails are biased, reflecting the
characteristics of the fastest growing or most heat re-
sistant serotype of the cocktail. In the discussions pre-
sented in this article, an adjustment to decrease this
bias and to account for between-serotype variation is
offered when information is available on the between-
serotype variances within a population of serotypes.
Information concerning the interaction of serotypes
over the range of conditions is needed to assure that
unbiased estimates are obtained.

For growth of a small number of cells, a bet-
ter understanding of the probability distribution of
phases of cell growth among cells in a population is
needed. The equations given in this article indicate,
with a small number of cells, that, simultanecusly,
there could be significant probabilities of no growth
or a very large amount of growth, so that the expected
value of the growth curve would not be a good rep-
resentative value of the possible growth for use in
a risk assessment. Microscopic investigation of cell
development is needed to clarify the situation more
accurately.

AUTHOR NOTE

Mention of brand or firm name does not con-
stitute an endorsement by the US. Department of
Agriculture above others of a similar nature not
mentioned.

APPENDIX
Stochastic Growth

It is assumed that there is a population of cells,
referred to as O-cells, in stationary phase. At timet =
0, the environment has somehow changed, permit-
ting the cells to grow. The O-cells must pass through
a “lag” phase before growth is possible. When the
cell completes its lag phase, the cell is referred to as
a D-cell. Tt is assumed that when a D-cell divides it
produces two new D-cells, and that D-cells grow ac-
cording to a simple linear birth process. Also, it is
assumed that all the passage events are mutually in-
dependent. Thus, equations describing the distribu-
tion of the number of cells from the growth of N cells
can be derived from equations describing the growth
from a single cell.

Letw(r,s)= f; (7)) dr where u(z)is the exponen-
tial growth rate of D-cells, assumed to be a function
of time, ¢. If #, is the time an O-cell becomes a D-cell,
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then the distribution of the increase in the number of
D-cells, I{1), associated with the one D-cell at time ¢ >
ty, is the geometric distribution™ with generating
function:

e-—v(r,tu)
1 - (1 - e-v{:.m})s ’

gils.t— 1) = (A1)
Thus, conditional on the time, 3, the generating func-
tion, F(s,t{4), for the number of cells, from a given
original cell, is:

Fls, 1 1tg) = ((t < to)s + (1 = 0)[sg1(s. ¢ — )]
(A2)

where () is equal to 1 if the argument is true, other-
wise it is equal to 0. Let H(r) = Prob{fp <) =1 —
¢~ ") be the cdf of the transition time, where y(f) =
_[; (1) dr. The unconditional generating function of
the number of cells F(s, 1} is:

F(s,t) =se 7 ¢ [Isg(s,! ~1}YdH(r) (A3)
0

where dH{z) = A(r)e " dr.

The above equation is similar to one used by
Barayani and Pin,'*%E3.1% except their equation was
describing the expected value rather than the gen-
erating function and assumed that g was constant.
Equation (A3) describes the generating function for
the number of cells given one O-cell. It is assumed
that the times in lag phase and of cel division are in-
dependent, thus the expected value and the variance
of the relative growth, (1) = N(r)/ Ny, where N{t) is
the number of cells at time 1. and N, is the number of
cells at 1 = 0, can be obtained using the properties of
generating functions. The derived equations are:

t
E(r{(t)) = 770 +f T dH(r)
4

Novar(r(z)) = 2 fo en e gy (A9

+ E(r(0))(1 — E(r{D)).

From Equations {Al) and (A3), when Ny=1, the
probability of j organisms are:

pi(e) = e 4 j 0D 4R (r)
o (AS)

( -
p](f) = [ g"”(t»f)(l - e*v(!.t})}’—i dH(r), j o1
0

When Ny > 1, the generating function of the number
of organisms is (F(s, t))™, so that for small Ny the

Juneja, Marks, and Huang

probabilities of the number of organisms can be com-
puted, given the pjs. For large Ny, approximations us-
ing extreme value or log-normal distribution could be
used.(1¥
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